

Bispecific Molecules: Promises and Challenges

Bing Wang, PhD

Clinical Pharmacology & DMPK MedImmune LLC

2016 ASCPT Annual Conference, San Diego, CA

Bispecific Molecules: 1 + 1 > 2

 Simultaneously modulating two targets renders an extra dimension of therapeutic possibilities

- Two epitopes on one target
- Two targets on one cell
- Two targets in the same pathway
- Two targets in different pathways
- New mechanisms
- T cell redirecting, BBB penetration...
 MedImmune

Efficacy

Bispecific: a Multitude of Structural Diversity

Spiess C eta al. Mol Immunol 2015: 67: 95-106

Scaffold-Dependent Activity of BsAb > Mixed mAbs

- Anti-PcrV to prevent toxin injection into host cells
 - High affinity for low density target
- Anti-PsI to promote OPK and block cell adherence
 - Low affinity for high density target

	Mediate OPK	Inhibit Cell Attachment	Inhibit Cytotoxicity
Anti-Psl			
Anti-Pcr∨			
Mixture			
BiS2Ab			
BiS3Ab			
BiS4Ab MEDI3902			

DiGiandomenico A eta al, Sci Transl Med 2014;6:262ra155 Gao C, AAPS 2015

Clinical Pharmacology Considerations for BsAb

♦ Target evaluation

- Disease association
- Expression and turnover rate; up/down-regulation

Affinity

- Tug war between two targets
- Optimal affinity \neq high affinity

PK

- Serum half-life vs. tissue penetration
- Interspecies scaling
- (Immunogenicity)
- Dose
 - Hook Effect

Systems Pharmacology: MEDI3549 (Ang2-TNF bispecific)

Table 1: Summary of pathophysiological differences explored with three virtual patients.

	VPI	VP2	VP3
TNF effect on Ang2	No	Yes	Yes
Leaky vessel conversion to normal	No	Yes	Yes
VEGF effect on normal vessels	Yes	Yes	No
Matches steady-state data	Yes	Yes	Yes
Matches Golimumab effect on cell numbers	Yes	Yes	Yes
Golimumab effect on leaky vessels	Reduced growth	Significant decrease	Significant decrease
Golimumab effect on mature vessels	Regression	Stabilization	Increase
<u>Q2W</u>	<u>Q4W</u>		
	ells/mm^2	hhhh	hhh

200 10 10 Time_weeks

Bispecific Molecule: Optimal Affinity **≠** High Affinity

Bispecific Antibody: PK-PD

BsAb anti-IL4/anti-IL13 (soluble targets)

BsAb anti-CXCL13IL4/anti-ICOS (soluble/membrane-bound)

MedImmune

Chudasama V eta al, J Pharmacokinet Pharmacodyn 2015; 42:1-18

FIH Dose Selection: No Relevant Animal Species for Tox

M&S based MABEL Dose Selection

Bispecific Antibody: Dose-Response Simulation #1

A: BsAb
 X: TAA
 Y: CD3

- AX: BsAb-TAA
 - AY: BsAb-CD3
 - AXY: BsAb-TAA-CD3 triplex
 - Primary interest for simulation (response)

Bispecific Antibody: Dose-Response Simulation #1

Prozone Phenomenon (Hook Effect)

- Excess BsAb impedes BsAb-TAA-CD3 triplex formation
- Majority forms are AX and AY, with minimum free X and Y for further binding

For illustration purpose only

Tissue penetration is not considered
 MedImmune

Bispecific Antibody: Dose-Response Simulation #2

Summary

- Bispecifics introduces a new dimension for biotherapeutics
- Purpose-engineered for optimal activity
 - Mechanism, target, scaffold, affinity, FcγR, ADC...
- Potential development challenges
 - Affinity tuning
 - Manufacturing and characterization
 - PK, Tox and Immunogenicity assessments
 - Exposure-response relationship
- M&S may facilitate the design and development of bispecific molecules

Acknowledgement

- Lorin Roskos, PhD
- ◆ Li Yan, PhD
- Song Ren, PhD
- Patrician Ryan, PhD
- Changshou Gao, PhD

